Power quality interface for low, medium and high voltage networks

Type PQI-D

> in wall mounting housing
$>$ in panel mounting housing
$>$ as a 19" plug-in module

1. Application

The state-of-the-art PQI-D power quality interface for medium and high voltage networks is the central component of a system for carrying out all of the required measurement tasks in electrical networks. PQID can be used both as a power quality interface according to DIN EN 50160 and as a measuring device for all physically defined measurement quantities in three-phase networks.

The component is primarily designed to monitor special reference qualities and quality agreements between the energy supplier and the customer, as well as to monitor, record, evaluate and store the data.

Modern voltage quality measuring devices operate according to the IEC 61000-4-30 standard. This standard defines measuring methods and so provides the user with a basis for comparison.

Devices from different manufacturers which function in accordance with this standard must provide the same measurement results.

The standard defines two different measuring devices classes.

- Class A measuring devices are used primarily for measurements related to contracts in the customer/supplier relationship,
- Class B measuring devices can be used for determining statistical quality values.

PQI-D complies with the requirements of IEC 61000430 for Class A devices for all parameters.

Parameters	Class
Accuracy of voltage measurement	A
Determination of time intervals	A
Marking of measurement values for events	A
Harmonics, interharmonics	A
Frequency	A
Voltage asymmetry	A
Event recording	A (with DCF77 or GPS)
Synchronisation	

In addition, three different fault value recorders can be used.

The oscilloscope recorder stores fault records which are composed of $100 \mu \mathrm{~s}$-sampling values of freely selectable length (pre-event and post-event history)
The r.m.s. recorder stores fault records which are composed of the r.m.s. values of half period values (10 ms). The length of the fault record (pre-event and post-event history) is also freely selectable.
The harmonics recorder stores the corresponding spectrum of all harmonics from the 2nd to the 50th if a limit value (harmonic or THD of a voltage) is exceeded.

All fault records are triggered by a freely definable event. This enables phase-phase and phase-earth events to be recorded simultaneously.
Limit value violations can also be signalled via LEDs or relays if required.

The inputs and outputs of the interface can be supplied in various hardware versions; its later use is prescribed by the configuration of the input current transformer and the voltage transformer.

The PQI-D can also be used as a "genuine" fault recorder.
Input currents of up to 20 times the value of the nominal current can be measured using design features C21 or C31. In this way, the variation in time of currents before and after a fault can be recorded and evaluated for fault analysis.
The following input configurations can be selected:

- 4 voltage transformers for conventional power quality applications (feature C1)
- 8 voltage transformers for power quality applications in double busbar systems (feature C10)
- 4 voltage transformers and 4 current transformers for power quality tasks and general measurement tasks.
The following versions are also available:
- 5 binary outputs, 16 binary outputs, status output (feature MOO)
- 3 binary outputs, 6 binary inputs, 4 analogue outputs, status output (feature M92)
- 6 binary outputs, status output (feature M93)
- 8 analogue outputs (feature M94)
- 6 analogue outputs, 2 relay outputs, status output (feature M95)
- 16 binary inputs, 4 analogue inputs and status output (features M97 / M98)
If the PQI-D is supplied in a 20TE or 30TE housing, the desired number and type of inputs and outputs on the terminal strip must be specified.
The version should be specified since the plug-in module offers a wide range of different inputs and outputs but the options for connecting terminals are limited.

Up to 255 devices can be connected to one another via the system bus (E-LAN). Connections to the REGSys ${ }^{\text {TM }}$ voltage regulation system and the EORSys

Petersen coil regulation and earth fault detection system are always possible.

Each component has two RS 232 interfaces (COM 1 and COM 2), one RS485 bus interface (COM 3), two interfaces each for the E-LAN (Energy-Local Area Network) system and transport buses and two RS485 Time and Trigger buses.

1.1 Power quality interface features PQI-D

- Measuring the voltage quality acc. to DIN EN 50160
- Class A device according to IEC 61000-4-30
- 10.24 kHz sampling frequency
- Fault recording function up to 20 • In
- Phase-phase and phase-earth measurements are possible simultaneously
- Voltage measurement channels for U12, U23, U31, UNE
- Additional measurement of currents I1, I2, I3, Io
- Determination of over 3000 measurement values
- Freely programmable limit values and output via isolated contacts
- Five freely programmable LEDs
- Freely programmable binary inputs to start or stop measurements remotely
- Adoption of conventional measurement transducer functions; up to eight measurement quantities can be selected and output via mA signal
- Evaluation of data via a mySQL-supported database using the WinPQ software package
- Connection to the control system according to IEC 870-5-103
- Connection to control technology according to IEC 61850

1.2 Description

Power quality interface function

2. Technical characteristic values

Regulations and standards

IEC 61010-1 / DIN EN 61010-1
IEC 60255-22-1 / DIN EN 60255-22-1
IEC 61326-1 / DIN EN 61326-1
IEC 60529 / DIN EN 60529
IEC 60068-1 / DIN EN 60068-1
IEC 60688 / DIN EN 60688
IEC 61000-6-2 / DIN EN 61000-6-2
IEC 61000-6-4 / DIN EN 61000-6-4
IEC 61000-6-5 / DIN EN 61000-6-5

Electromagnetic co	patibility
Interference emissions	Group 1 limit class A according to EN 55011:1991
Interference immunity	Electrostatic discharge according to EN 61000-4- 2:1995 Air discharge: 8 kV Contact discharge: 4 kV Electromagnetic fields according to EN 50140:1993 and ENV 50204:1995 $80-1000 \mathrm{MHz}: 10 \mathrm{~V} / \mathrm{m}$ $900 \pm 5 \mathrm{MHz}: 10 \mathrm{~V} / \mathrm{m}$ pulse modulated Fast transient interferences (bursts) acc. to EN 61000-4-4: 1995 Supply voltage 230 V AC: 2 kV ; Data cables 1 kV Conducted interferences acc. to ENV 50141:1993 0.15 - $80 \mathrm{MHz}: 10$ Veff 50 Hz magnetic fields according to EN 61000-4-8:1993 $30 \mathrm{~A} / \mathrm{m}$
Voltage inputs	
Option	E1 E2
Nominal voltage	$100 \mathrm{~V} \quad 230 \mathrm{~V}$
Voltage end range	$200 \mathrm{~V} \quad 460 \mathrm{~V}$
Input resistance	$360 \mathrm{k} \Omega \quad 810 \mathrm{k} \Omega$
Measurement fault	$< \pm 0.1 \%$ von $U_{\text {din }}$ Range $10 \% \ldots 150 \%$ of $U_{\text {din }}$
Phase error	$\begin{gathered} < \pm 0.15^{\circ} \\ \text { Range } 50 \% \ldots 150 \% \text { of } \mathrm{U}_{\text {din }} \end{gathered}$
Bandwidth	DC... 3 kHz
Harmonics 2nd ... 50th Measurement fault	$\begin{gathered} < \pm 5 \% \text { of meas. value } U_{m} \\ =1 \% \ldots 16 \% \text { of } U_{\text {din }} \\ < \pm 0.05 \% \text { of } U_{\text {din }}-U_{m} \\ <1 \% \text { of } U_{\text {din }} \end{gathered}$
Interharmonics 2th ... 49th Measurement fault	$\begin{gathered} < \pm 5 \% \text { of meas. value } U_{m} \\ =1 \% \ldots 16 \% \text { of } U_{\text {din }} \\ < \pm 0.05 \% \text { of } U_{\text {din }}-U_{m} \\ <1 \% \text { of } U_{\text {din }} \end{gathered}$
Insulation category	CAT III / 300 V

*) Note: See features list on pages 24 and 25 for feature characteristics, e.g."E1, E2, C20, C31..."

Current inputs				
Option	C20	C21	C30	C31
Nominal current	1 A		5 A	
Current end range	$\begin{gathered} 0<1 \leq 2 \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 0<1 \leq 20 \\ \text { A } \end{gathered}$	$\begin{gathered} 0<\mathrm{I} \leq 10 \\ \mathrm{~A} \end{gathered}$	$0<1 \leq 100 \mathrm{~A}$
Load (In)	$<0.1 \mathrm{VA}$		$<0.5 \mathrm{VA}$	
Measurement fault	$< \pm 0.1 \%$ of measurement value			$< \pm 0.2 \%$ of meas- urement value
Phase error	$\begin{gathered} < \pm 0.15^{\circ} \\ \text { Range } \\ 10 \% \ldots . . \\ 100 \% \end{gathered}$	$\begin{gathered} < \pm 0.15^{\circ} \\ \text { Range } \\ 5 \% \ldots 50 \% \end{gathered}$	$\begin{gathered} < \pm 0.15^{\circ} \\ \text { Range } \\ 10 \% \ldots . . \\ 100 \% \end{gathered}$	$\begin{gathered} < \pm 1.0^{\circ} \\ \text { Range } \\ 5 \% \ldots 10 \% \end{gathered}$
Bandwidth	$25 \mathrm{~Hz} . . .3 \mathrm{kHz}$			
Harmonics 2nd ... 50th Measurement fault	$< \pm 5 \%$ of measurement value-$\begin{gathered} I_{m}=1 \% \ldots 16 \% \text { of } I_{n}< \pm 0.05 \% \\ \text { von } I_{n}-I_{m}<1 \% \text { von } I_{n} \end{gathered}$			$\begin{gathered} < \pm 10 \% \text { of } \\ \text { measure- } \\ \text { ment value } \\ I_{m} \\ =1 \% \ldots 16 \% \\ \text { of } I_{n} \\ < \pm 0.1 \% \text { of } I_{n} \\ I_{m} \\ <1 \% \text { von } I_{n} \end{gathered}$
Interharmonics 2nd ... 49th Measurement fault	$< \pm 5 \%$ of measurement value$\begin{aligned} I_{m}= & 1 \% \ldots 16 \% \text { of } I_{n}< \pm 0.05 \% \\ & \text { von } I_{n}-I_{m}<1 \% \text { von } I_{n} \end{aligned}$			$\begin{gathered} < \pm 10 \% \text { of } \\ \text { measure- } \\ \text { ment value } \\ I_{m} \\ =1 \% \ldots 16 \% \\ \text { of } I_{n} \\ < \pm 0.1 \% \text { of } I_{n} \\ I_{m} \\ <1 \% \text { of } I_{n} \end{gathered}$
Overload capacity permanent $\leq 10 \mathrm{~s}$ $\leq 1 \mathrm{~s}$ $\leq 5 \mathrm{~ms}$	$\begin{gathered} 5 \mathrm{~A} \\ 10 \mathrm{~A} \\ 30 \mathrm{~A} \\ 100 \mathrm{~A} \end{gathered}$	10 A		
Insulation category	CAT III / 300 V			

Feature C40: mV inputs for Rogowski coils

Input resistance	$10 \mathrm{k} \Omega$
Full scale range	150 mV

i
Note : In order to guarantee measurement accuracy only Rogowski coils from A. Eberle GmbH \& Co. KG should be used.

Feature C41: mV-inputs for mini clamps

Input resistance	$2 \mathrm{M} \Omega$
Full scale range	230 mV

Analogue outputs (AO)
See ordering information for number

Output range $-\quad \mathrm{Y} 1 \ldots \mathrm{Y} 2$	$-20 \mathrm{~mA} \ldots 0 \ldots 20 \mathrm{~mA}$ Y 1 and Y 2 programmable		
Electrical isolation	Optocoupler		
Load range	$0 \leq \mathrm{R} \leq 8 \mathrm{~V} / \mathrm{Y} 2$		
Alternating component	$<0.5 \%$ von Y2		The outputs can be continuously short-circuited or
:---			
operated open. All output connections are galvanically	isolated from all other circuits.		

Binary inputs (BI)	
Control signals $\mathrm{Ust}_{\text {st }}$	In the range AC/DC 48 V... 230 V (additional voltage ranges available on request)
Curve shapes - H-level - L-level	Rectangular, sinusoidal $\begin{aligned} & \geq 35 \mathrm{~V} \\ & <20 \mathrm{~V} \end{aligned}$
Signal frequency	DC ... 60 Hz
Switching delay	Selectable from $1 . .999 \mathrm{~s}$
Input resistance	$108 \mathrm{k} \Omega$
Electrical isolation	Optocoupler; all inputs earthed on one side

Binary outputs (BO)	
Max. Switching \leq frequency	$\leq 1 \mathrm{~Hz}$
Electrical isolationIs in	Isolated from all deviceinternal potentials
Contact load $\quad 1$AC: (ca AC: (cas DC: ca	AC: $250 \mathrm{~V}, 5 \mathrm{~A}$ $(\cos \varphi=1,0)$ AC: $250 \mathrm{~V}, 3 \mathrm{~A}$ $(\cos \varphi=0,4)$ DC: 220 V, 150 W Switching capacity
No. Of switching operations \geq	$\geq 1 \cdot 10^{4}$ electrical
Limit value monitoring	
Limit values	programmable
Response times	programmable
Alarm displays	LED programmable relay programmable
Measurements quantities (selection from over 3000 meas. quantities)	
Voltages TRMS	$\begin{aligned} & U_{1 N}, U_{2 N}, U_{3 N}, U_{N E}, U_{12}, U_{23}, \\ & U_{31} \end{aligned}$
Current TRMS	$I_{1}, l_{2}, l_{3}, l_{0}$
Active power	P_{n}
Reactive power	Q_{n}
Apparent power	S_{n}
Power factors	$\cos \varphi_{\mathrm{n}}$
Harmonics	U / I up to 50.
Interharmonics	U / I DC up to 49.
Frequency	f
Reference conditions	
Reference temperature	e $\quad 23^{\circ} \mathrm{C} \pm 1 \mathrm{~K}$
Input quantities	$\begin{aligned} & U_{E}=90 \ldots 110 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{E}}=0 \ldots 1 \mathrm{~A} / 0 \ldots 5 \mathrm{~A} \end{aligned}$
Auxiliary voltage	$\mathrm{H}=\mathrm{Hn} \pm 1 \%$
Frequency	$50 \mathrm{~Hz} . . .60 \mathrm{~Hz}$
Load	$\mathrm{Rn}=4 \mathrm{~V} / \mathrm{Y} 2 \pm 1 \%$

Reference conditions	
(for features M92; M94 only)	
Other	IEC 688 - Part 1
Data acquisition	
Error limit - all errors compared to Y2	
Voltage	0,1 \%
Current	$\begin{aligned} & \hline 0,1 \% ~(C 20, ~ C 30) \\ & 0,5 \%(C 21, C 31) \end{aligned}$
Frequency	$\begin{array}{\|l} 0,01 \% \\ \text { (i.e. @ } 50 \mathrm{~Hz} \Rightarrow 5 \mathrm{mHz} \text {) } \end{array}$
Powers and all other quantities	$\begin{aligned} & 0,25 \%(C 20, C 30) \\ & 1,0 \%(C 21, C 31) \end{aligned}$
Measurement cycle time	$10 \mathrm{~ms} / 200 \mathrm{~ms}$
Sampling rate	10240 Hz
ADC resolution	24bit
Anti-Aliasing filter - Analogue filter - Digital filter	3rd order Butterworth Filter sinc5 decimation filter (ADC)
Nominal frequency	$\mathrm{f}_{\text {nom }}=50 \mathrm{~Hz}, 60 \mathrm{~Hz}$
Frequency measuring range	$\mathrm{f}_{\text {nom }} \pm 15 \%$

Storage of measurement values	
Memory	64 MB
Electrical safety	I
Protection class	2
Degree of pollution	$\mathrm{II}, \mathrm{III}$
Overvoltage category	

III	II
Current and voltage inputs Auxiliary voltage	Control circuits Analogue outputs COM's, E-LAN

Operating voltages		
$\mathbf{5 0} \mathbf{~ V}$	$\mathbf{1 5 0} \mathbf{V}$	$\mathbf{2 3 0} \mathbf{V}$
E-LAN,	Voltage input (E1)	Voltage input (E2) Auxiliary voltage COM1 ... COM3 Analogue outputs Current Time- / Trigger-BUS inputs input

Test voltages	
Mounting rack / housing	2.5 kV
Auxiliary voltage	3.1 kV
COM's, E-LAN, Time-/Trigger-BUS	0.35 kV
Binary outputs	1.8 kV
Binary inputs (250 V)	1.8 kV
Analogue outputs	0.35 kV
Input voltage (E1, E2)	1.4 kV
Input currents	1.4 kV

Note: All test voltages are AC voltages in kV , which may be applied for 1 minute

$l \mid l$		
Power supply		
Feature	H1	H2
AC	$90 \ldots 264 \mathrm{~V}$	-
DC	$100 \ldots 300 \mathrm{~V}$	$18 \ldots 72 \mathrm{~V}$
Power consumption.	$\leq 15 \mathrm{VA}$	$\leq 15 \mathrm{Watt}$
Frequency	$45 \ldots 400 \mathrm{~Hz}$	-
Microfuse	T2 250 V	T2 250 V

The following applies to all features:

Voltage dips of $\leq 80 \mathrm{~ms}$ cause neither a loss of data nor a malfunction

Climatic stability	
Temperature range	
- Function (housing)	$-10^{\circ} \mathrm{C} \ldots+50^{\circ}$
- Function (plug-in module)	$-10^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
- Transport and storage	$-25^{\circ} \mathrm{C} \ldots+6{ }^{\circ} \mathrm{C}$

3. Mechanical design

Plug-in module	
Front panel	aluminium, RAL 7035 grey
Height	3 HE (132.5 mm)
Width	18 TE (91.44 mm)
Circuit board	$160 \mathrm{~mm} \times 100 \mathrm{~mm}$
Weight	$\leq 1.0 \mathrm{~kg}$
Degree of protection $\quad-\quad$ Plug-in module	IP 00 IP 00
Mounting	According to DIN 41494 part 5
Plug-in connectors	DIN 41612

Housing

The PQI-D is also very flexible with regard to the type of housing used. Some possible types of housing are described below. The standard versions are the two described at feature B90 and feature B92. Since the number of inputs, outputs, COMs, etc. in a 19 " plugin module is much greater than the number of available terminals on the housing, pin assignment must be individually specified for versions B90...B92.

Material	plastic
Degree of protection	housing IP 65
Weight	$\leq 1.5 \mathrm{~kg}$
Dimensions	See figures 5 and 6
Connection elements	Screw terminals

19" plug-in modules in mounting rack 84 TE feature B92

Position of socket connectors for feature C00

Position of blade connectors and PCBs for feature COO

Position of socket connectors for feature C10

Position of blade connectors and PCBs for feature C10

Position of the blade connectors and PCBs for feature C20....C31

Position of the socket connectors for feature C40... C41

Position of the blade connectors and PCBs for feature C40.... 41

4. Assignment of socket connectors 1 ... 5

Note:
Please refer to pages 7 and 8 for the position of the socket connectors

Socket connector 1 (obligatory for all feature combinations COO ... C31)

Auxiliary voltage, voltage inputs
Input voltages $\mathrm{U}_{1 \mathrm{E}} \ldots . . \mathrm{U}_{3 \mathrm{E}}, \mathrm{U}_{\mathrm{NE}}, \mathrm{U}_{\text {sync }}$ and auxiliary voltage

Designation		Function	Pin	assignment
Phase voltage L1(AC)	$\mathrm{U}_{1 \mathrm{E}}$	L1	8	
		E	22	
Phase voltage L2(AC)	$\mathrm{U}_{2 \mathrm{E}}$	L2	12	
		E	22	
Phase voltage L3(AC)	$\mathrm{U}_{3 \mathrm{E}}$	L3	16	
		E	22	
Neutral earth voltage	$U_{\text {NE }}$	N	20	
		E (PE)	22	
Auxiliary voltage	U_{H}	L (+)	28	
		L (-)	30	
Auxiliary voltage	U_{H}	PE	32	

Voltage inputs $\mathrm{U}_{1 \mathrm{E}} \ldots \mathrm{U}_{3 \mathrm{E}}$ can be used for a rated value of up to $110 \mathrm{~V}(\mathrm{E} 1)$ or $230 \mathrm{~V}(\mathrm{E} 2)$.

Socket connector 2 - is not required for feature COO
Socket connector 2 - feature C10

4 voltage inputs

[i]
Note: voltages for busbar 2 are indicated by

Socket connector 2 - features C40 and C41

4 current inputs for current clamps

Note: The $m V$ inputs are not galvanically isolated from each other or from the CPU

Designation		Function	Pin	assignment
Phase current II (AC)	I_{1}	+	d2	
		-	d4	
		Shielding	z2	
Phase current 12(AC)	I_{2}	+	d8	
		-	d10	
		Shielding	z8	
Phase current I3 (AC)	I_{3}	+	d14	
		-	d16	
		Shielding	z14	
Sum current(AC)	Io	+	d20	
		-	d22	
		Shielding	z20	

Socket connector - feature C20 ... C31

Current inputs via high-current contact with upstream short-circuit contact

Designation		Function	Pin	assignment
Phase current II(AC)	I_{1}	S1	6	
		S2	5	
Phase current 12(AC)	I_{2}	S1	4	
		S2	3	
Phase current 13 (AC)	I_{3}	S1	2	
		S2	1	

Socket connector - feature C20 ... C31

Current inputs

Version with:	4	voltage inputs and
	4	current inputs with high-current contacts

Designation		Function	Pin	assignment
Not assigned	-	-	6	
		-	5	
Not assigned		-	4	
		-	3	
Sum current (AC)		S1	2	
		S2	1	

Socket connector 4 - feature M00 / M96

Binary inputs, outputs

Version with:	16	binary inputs
5	binary outputs (NO contacts)	
1	status relay	

Designation		Function	Pin	Comments
Status	$\begin{aligned} & \text { Relay } \\ & \text { R1 } \end{aligned}$	NC contact NO contact Pole	$\begin{array}{\|l} \text { b10 } \\ \text { b12 } \\ \text { b14 } \end{array}$	Freely programmable
Binary outputs 230 V	R2	NO contact	b18	Freely programmable
	R3	NO contact	b20	Freely programmable
	R4	NO contact	b22	Freely programmable
	R5	NO contact	b24	Freely programmable
	R6	NO contact	b26	Freely programmable
	R2...R6	Pole	b16	
Binary inputs 230 V	E1	+	z2	Freely programmable
	E2	+	b2	Freely programmable
	E3	+	z4	Freely programmable
	E4	+	b4	Freely programmable
	E5	+	z6	Freely programmable
	E6	+	b6	Freely programmable
	E1...E6, E13, E14	GND	z8	
	E7	+	z32	Freely programmable
	E8	+	b32	Freely programmable
	E9	+	z30	Freely programmable
	E10	+	b30	Freely programmable
	E11	+	z28	Freely programmable
	E12	+	b28	Freely programmable
	E13	+	z10	Freely programmable
	E14	+	z12	Freely programmable
	E15	+	z22	Freely programmable
	E16	+	z24	Freely programmable
	E7...E12, E15, E16	GND	z26	

Socket connector 4 - feature M92

Binary inputs, outputs, analogue outputs

Version with:	6	binary inputs
2	binary outputs (NO contacts)	
4	analogue outputs	
	1	status relay

Designation		Function	Pin	Comment
Analogue outputs	K1	$+$	$\begin{aligned} & \hline \text { z26 } \\ & \text { b26 } \end{aligned}$	Freely programmable
	K2	$+$	$\begin{array}{\|l\|} \hline \text { z28 } \\ \text { b28 } \end{array}$	Freely programmable
	K3	$+$	$\begin{aligned} & \mathrm{z} 30 \\ & \text { b30 } \end{aligned}$	Freely programmable
	K4	$+$	$\begin{aligned} & \hline \text { z32 } \\ & \text { b32 } \end{aligned}$	Freely programmable
Binary inputs 230 V	E1	+	z6	Freely programmable
	E2	+	b6	Freely programmable
	E3	+	b8	Freely programmable
	E1...E3	GND	z8	
	E4	+	z2	Freely programmable
	E5	+	b2	Freely programmable
	E6	+	b4	Freely programmable
	E4...E6	GND	z4	
Binary outputs 230 V	Status R1	NC contact NO contact Pole	$\begin{aligned} & \hline \text { z20 } \\ & \text { z22 } \\ & \text { b22 } \end{aligned}$	
Binary outputs 230 V	R2	NC contact NO contact	$\begin{array}{\|l\|l} \mathrm{b} 18 \\ \text { z18 } \end{array}$	Freely programmable
	R3	NC contact NO contact	$\begin{array}{\|l\|} \hline \text { b14 } \\ \text { z14 } \\ \hline \end{array}$	Freely programmable
	R4	NC contact NO contact	$\begin{array}{\|l\|} \hline \text { b10 } \\ \text { z10 } \end{array}$	Freely programmable

Socket connector 4 - feature M93

Binary outputs

Version
Version with: $\quad 6 \quad$ Binary outputs

Designation		Function	Pin	assignment
Binary outputs 230 V (Relays 1....6)	R3	Pole NC contact NO contact	$\begin{array}{\|l} \text { b10 } \\ \text { b12 } \\ \text { z10 } \end{array}$	Freely programmable
	R4	Pole NC contact NO contact	$\begin{array}{\|l\|l} \text { b14 } \\ \text { b16 } \\ \text { z14 } \end{array}$	Freely programmable
	R5	Pole NC contact NO contact	$\begin{array}{\|l\|} \hline \text { b18 } \\ \text { b20 } \\ \text { z18 } \end{array}$	Freely programmable
	R6	Pole NC contact NO contact	$\begin{aligned} & \text { b22 } \\ & \text { b24 } \\ & \text { z22 } \end{aligned}$	Freely programmable
	R7	Pole NC contact NO contact	$\begin{array}{\|l} \text { b26 } \\ \text { b28 } \\ \text { z26 } \end{array}$	Freely programmable
	R8	Pole NC contact NO contact	$\begin{array}{\|l} \text { b30 } \\ \text { b32 } \\ \text { z30 } \end{array}$	Freely programmable
Binary outputs 230 V	Status R2	Pole NC contact NO contact	$\begin{aligned} & \text { b6 } \\ & \text { b8 } \\ & \text { z6 } \end{aligned}$	

Socket connector 4 - feature M94

Analogue outputs

Version with: 8 Analogue outputs

Socket connector no.

- Pin assignment
- Row

Designation		Function	Pin	Comments
Analogue outputs	K1	mA output +	$\begin{aligned} & \mathrm{b} 2 \\ & \text { z2 } \end{aligned}$	Freely programmable
	K2	mA output +	$\begin{aligned} & \text { b6 } \\ & \text { z6 } \end{aligned}$	Freely programmable
	K3	mA output +	$\begin{aligned} & \text { b10 } \\ & \text { z10 } \end{aligned}$	Freely programmable
	K4	mA output +	$\begin{aligned} & \text { b14 } \\ & \text { z14 } \end{aligned}$	Freely programmable
	K5	mA output +	$\begin{aligned} & \text { b18 } \\ & \text { z18 } \end{aligned}$	Freely programmable
	K6	mA output +	$\begin{aligned} & \mathrm{b} 22 \\ & \mathrm{z} 22 \end{aligned}$	Freely programmable
	K7	mA output +	$\begin{aligned} & \mathrm{b} 26 \\ & \text { z26 } \end{aligned}$	Freely programmable
	K8	mA output +	$\begin{aligned} & \text { b30 } \\ & \text { z30 } \end{aligned}$	Freely programmable

Socket connector 4 - feature M95

Analogue outputs, binary outputs

		Function		Pin	Comment
Designation Analogue outputs	K1	$+$		$\begin{aligned} & \hline \text { z22 } \\ & \text { b22 } \end{aligned}$	Freely programmable
	K2	$+$		$\begin{aligned} & \hline \text { z24 } \\ & \text { b24 } \end{aligned}$	Freely programmable
	K3	$+$		$\begin{array}{\|l\|} \hline \text { z26 } \\ \text { b26 } \end{array}$	Freely programmable
	K4	+		$\begin{array}{\|l\|l\|} \hline \text { z28 } \\ \text { b28 } \end{array}$	Freely programmable
	K5	$+$		$\begin{aligned} & \hline \text { z30 } \\ & \text { b30 } \end{aligned}$	Freely programmable
	K6			$\begin{aligned} & \mathrm{z} 32 \\ & \text { b32 } \end{aligned}$	Freely programmable
Binary outputs 230 V	Status R1	NC NO Pole	contact contact	b14 b18 b16	
Binary outputs 230 V	R2	NC NO Pole	contact contact	$\begin{aligned} & \hline \text { b10 } \\ & \text { b8 } \end{aligned}$	Freely programmable
	R3	NC NO Pole	contact contact	$\begin{array}{\|l} \text { B4 } \\ \text { b2 } \end{array}$	Freely programmable

Socket connector 4 - feature M97

Binary inputs, analogue inputs

Designation		Function	Pin	Comments
Analogue inputs	A1	$+$	$\begin{array}{\|l\|} \hline z 22 \\ z 24 \\ \hline \end{array}$	Freely programmable
	A2	$+$	$\begin{aligned} & \hline \text { z26 } \\ & \text { z28 } \end{aligned}$	Freely programmable
	A3	$+$	$\begin{array}{\|l\|} \hline \text { d30 } \\ \text { z30 } \end{array}$	Freely programmable
	A4	$+$	$\begin{array}{\|l\|} \hline \mathrm{d} 32 \\ \mathrm{z} 32 \end{array}$	Freely programmable
Binary inputs 230 V	E1	+	d2	Freely programmable
	E2	+	d4	Freely programmable
	E3	+	d6	Freely programmable
	E4	+	d8	Freely programmable
	E5	+	d10	Freely programmable
	E6	+	d12	Freely programmable
	E7	+	d14	Freely programmable
	E8	+	d16	Freely programmable
	E1...E8	GND	d18	
	E9	+	z2	Freely programmable
	E10	+	z4	Freely programmable
	E11	+	z6	Freely programmable
	E12	+	z8	Freely programmable
	E13	+	z10	Freely programmable
	E14	+	z12	Freely programmable
	E15	+	z14	Freely programmable
	E16	+	z16	Freely programmable
	E9...E16	GND	z18	
Status	Relay R1	NC contact NO contact Pole	$\begin{aligned} & \text { d24 } \\ & \text { d26 } \\ & \text { d22 } \end{aligned}$	

Socket connector 4 - feature M98

Binary inputs, analogue inputs

Designation		Function	Pin	Comments
Analogue inputs	A1	$1+$	$\begin{aligned} & \mathrm{z22} \\ & \text { z24 } \end{aligned}$	Freely programmable
	A2	$+$	$\begin{aligned} & \hline \text { z26 } \\ & \text { z28 } \end{aligned}$	Freely programmable
	A3	$1+$	$\begin{aligned} & \mathrm{d} 30 \\ & \text { z30 } \end{aligned}$	Freely programmable
	A4	$+$	$\begin{aligned} & \mathrm{d} 32 \\ & \text { z32 } \end{aligned}$	Freely programmable
Binary inputs 230 V	E1	+	d2	Freely programmable
	E2	+	d4	Freely programmable
	E3	+	d6	Freely programmable
	E4	+	d8	Freely programmable
	E5	+	d10	Freely programmable
	E6	+	d12	Freely programmable
	E7	+	d14	Freely programmable
	E8	+	d16	Freely programmable
	E1...E8	GND	d18	
	E9	+	z2	Freely programmable
	E10	+	z4	Freely programmable
	E11	+	z6	Freely programmable
	E12	+	z8	Freely programmable
	E13	+	z10	Freely programmable
	E14	+	z12	Freely programmable
	E15	+	z14	Freely programmable
	E16	+	z16	Freely programmable
	E9...E16	GND	z18	
Status	Relay R1	NC contact NO contact Pole	$\begin{aligned} & \hline \text { d24 } \\ & \text { d26 } \\ & \text { d22 } \end{aligned}$	

Socket connector 5 Interfaces

COM2 and COM3 communication, E-LAN, Time- / Trigger-BUS

- Socket connector no

Pin assignment
Row

Designation	Function	Pin
$\begin{aligned} & \text { COM } 1 \\ & \text { RS } 232 \end{aligned}$	CTS	d24
	RxD	d22
	GND	d20
	RTS	d18
	TxD	d16
$\begin{aligned} & \text { COM } 2 \\ & \text { RS } 232 \end{aligned}$	CTS	z22
	RTS	z20
	GND	b24
	RxD	b22
	TxD	b20
$\begin{aligned} & \text { COM } 3 \\ & \text { RS } 485 \end{aligned}$	Rx-	z32
	Rx+	z30
	Tx-	b32
	Tx +	b30
	GND	d32
E-LAN R (right)	E-	z12
	E+	z10
	EA-	z8
	EA+	z6
	GND	d12
E-LAN L (left)	E-	b12
	E+	b10
	EA-	b8
	EA+	b6
	GND	d10
Time	Time A	b14
	Time B	b16
	Time in A	b2
	Time in B	b4
	GND	b26

Designation	Function	Pin
Trigger	Trigger A	z14
	Trigger B	z16
	Trigger in A	z2
	Trigger in B	z4
	GND	z26

5. Serial interfaces

RS232 interfaces

The PQI-D has two RS232 serial interfaces (COM1, COM2). COM1 is accessible via the D-Sub socket on the front of the device or via the screw terminals / DSub socket on the housing; COM2 is accessed via the screw terminals or the D-Sub on the housing.

COM2 is used to connect the regulating system to higher-level control systems or modems.

Connection elements

COM1 Pin strip, Sub Min D, on front of device pin assignment as on PC
COM2
Terminal strip (circuit board CB4)
Connection possibilities PC, Terminal, Modem, PLC
Number of data bits/ Parity 8, even, off, odd protocol
Transmission rate bit/s 1200, 2400, 4800, 9600, 19200, 38400, 57600, 76800, 115200
Handshake
RTS / CTS or Xon / Xoff

RS485 interfaces

Each PQI-D is equipped with a double E-LAN interface as standard. This provides bus connections to other PQI-Ds, to REG-D voltage regulators, REG-DP Petersen coil regulators and the EORSys earth fault locating system.

E-LAN (Energy- Local Area Network)

Features

- 255 bus stations can be addressed
- Multi-master structure
- Integrated repeater function
- Open ring, bus or combination of bus and ring
- Protocol based on SDLC/HDLC framework
- Transmission rate 62.5 or 125 kbit / s
- Telegram length 10... 30 Bytes
- Average throughput approx. 100 telegrams / s

COM3

For connection of ≤ 8 interface modules (BIN-D, ANAD) in any combination to each PQI-D.

Time and trigger bus

Several devices can be accurately synchronised via the time bus.

The trigger bus makes it possible to trigger a device on the basis of an event on another measuring device

Hardware-oriented device versions

The flexibility of the system, i.e. precisely matching specific requirements, can also be achieved using the hardware characteristics of the input and output configuration.
Tables 1 and 2 show the different possibilities.
A few typical possibilities have been selected from a total of 15 , and these are shown under the heading "Application examples".

Further individual adaptations can also be achieved by specially programming the device.

Measurement inputs

Feature	
C00	4 voltage inputs (100 V / 230 V)
C10	8 voltage inputs ($100 \mathrm{~V} / 230 \mathrm{~V}$) for double busbar system
C20 ... C31	4 voltage inputs (100 V / 230 V$),$ 4 current inputs (1 A / 5 A)
C40 / C41	4 voltage inputs (100 V / 230 V$),$ 4 current inputs for current clamps (mV)

Table 1

Binary inputs and outputs, analogue

outputs

Feature	BO	BI	AO	Al	Status / life contact
M00	5	16	-	-	1
M92	3	6	4	-	1
M93	6	-	-	-	1
M94	-	-	8	-	-
M95	2	-	6	-	1
M96	5	16	-	-	1
M97	-	16	-	4	1
M98	-	16	-	4	1

Table 2

BO: Relay Outputs
BI: Binary Inputs
AO: Analogue Outputs
AI: Analogue Inputs

Application Examples (a selection)

By combining feature groups " C " and " M ", there are 36 possible device versions.
Four typical hardware versions are described below.

Features... C00 ...

Features... C10 M92 ...

Features... C10 M93 ...

Features... C20-C31 M00 ...

Features... C20-C31 M94 ...

Features... C20-C31 M95 ...

Block diagram feature C10 / M00, M96

Block diagram feature C10 / M92

Block diagram feature C10 / M93

Block diagram feature C10 / M94

Block diagram feature C20...C31 / M95

Block diagram feature C40...C41, M97, M98

6. Ordering information

Please note the following when ordering:

- Only one code with the same capital letter is possible.
- If the capital letter is followed by the number 9 , additional details in plain text are required.
- If capital letters are followed only by zeros, the code can be omitted.

FEATURE	CODE
Power Quality Interface for medium and high voltage networks according to DIN EN 50160 and IEC 61000-4-30 with two E-LAN interfaces for communication - with REGSys components REG-D(A), PAN-D, REG-DP(A), MMU-D, EOR-D and REG-DM. The standard version is equipped with COM $1, C O M 2$ and COM 3	PQI-D
Design 19" plug-in module (18TE/3HE) Wall mounting housing (20TE) Panel mounting housing (30TE) - 19" frame or wall mounting housing (30TE, 49TE) Wiring according to agreement	$\begin{aligned} & \text { B01 } \\ & \text { B90 } \\ & \text { B91 } \\ & \text { B92 } \end{aligned}$
Supply voltage - AC 90V..110V..264V oder DC 100V..220V..300V - DC 18V...60V...72V	$\begin{aligned} & \mathrm{H} 1 \\ & \mathrm{H} 2 \end{aligned}$
Input configuration 4 voltage transformers 8 voltage transformers 4 voltage transformers 4 current transformers $\ln =1 \mathrm{~A}\left(I_{\max }<2 x \ln \right)$ 4 voltage transformers 4 current transformers $\ln =1 \mathrm{~A}$ ($I_{\max }<20 \times \ln$) 4 voltage transformers 4 current transformers $\ln =5 \mathrm{~A}\left(I_{\max }<2 \mathrm{x} \ln \right)$ 4 voltage transformers 4 current transformers $\ln =5 \mathrm{~A}\left(I_{\max }<20 \times \ln \right)$ 4 voltage transformers, 4 current inputs for Rogowski-coils 4 voltage transformers, 4 current inputs for mini current clamps	$\begin{aligned} & \text { C00 } \\ & \text { C10 } \\ & \text { C20 } \\ & \text { C21 } \\ & \text { C30 } \\ & \text { C31 } \\ & \text { C40 } \\ & \text { C41 } \end{aligned}$
Rated value of the input voltage $100 \mathrm{~V} / 110 \mathrm{~V}$ $230 \mathrm{~V} / 400 \mathrm{~V}$ Other rated voltages (e.g. $4 \times 100 \mathrm{~V}$ and $4 \times 400 \mathrm{~V}$)	$\begin{aligned} & \text { E1 } \\ & \text { E2 } \\ & \text { E9 } \end{aligned}$
Additional inputs and outputs with 5 programmable relays plus life contact 16 programmable binary inputs ($48 . . .250 \mathrm{~V} \mathrm{AC} / D C$) (additional voltage ranges possible on request) with 3 programmable relays plus life contact 4 programmable mA outputs and 6 programmable binary inputs Note: Please specify the nominal voltage for the binary inputs! with 7 programmable relays plus life contact with 8 programmable mA outputs with 6 analogue mA outputs and 2 binary outputs plus life contact with 5 relays plus life contact, 16 binary inputs for	MOO M92 M93 M94 M95 M96

FEATURE	CODE
DC signals (48 V ... 250 V) with time stamp accuracy of +20 ms (additional voltage ranges possible on request) with one programmable relay contact (e.g. life contact) 16 programmable binary inputs ($10 . . .50 \mathrm{~V} \mathrm{AC/DC}$) 4 analogue inputs ($0 . . .10 \mathrm{~V} / 4 \ldots 20 \mathrm{~mA}$) with one programmable relay contact (e.g. life contact) 16 programmable inputs (48 ... $250 \mathrm{~V} \mathrm{AC/DC}$) 4 analogue inputs ($4 \ldots 20 \mathrm{~mA}$)	M97 M98
Operating manual German English French	$\begin{aligned} & \text { G1 } \\ & \text { G2 } \\ & \text { G3 } \end{aligned}$

Accessories

Additions to PQI-D	CODE
Rogowski coil: Measurement range: 1 A to 2650 A, coil circumference: 61 cm with an 8 m long feeder cable	111.7009
Mini current clamp: Measuring range: 10 mA to 20 A , feeder cable 10 m with an 8 m long feeder cable	111.7010
Modem Develo MicroLink 56K	11.9030 .02
Power supply unit Phoenix In: 120 V to 230 V AC or 90 V to 250 V DC; Out: 24 V DC mounting on standard mounting rails	111.9005 .02
10MBit TCP/IP adaptor can be installed on standard mounting rails with power supply unit for Uh 230 V AC as $8 \mathrm{TE}, 3 \mathrm{HE}$ plug-in module with power supply unit: $85 \text { V AC ... } 110 \text { V ... } 264 \text { V / } 88 \text { V ... } 220 \text { V ... } 280 \text { V DC }$ as 8 TE, 3 HE plug-in module with power supply unit: $18 \mathrm{~V} . . .60 \mathrm{~V} . . .72 \mathrm{~V} \mathrm{DC}$	$\begin{aligned} & \text { REG-COM } \\ & \text { A01 } \\ & \text { A02 } \\ & \text { A03 } \end{aligned}$
DCF 77 radio clock	111.9024
GPS NIS Time radio clock Supply voltage AC/DC 85V...264V Supply voltage DC18V..72V	$\begin{aligned} & 111.9024 .45 \\ & 111.9024 .46 \end{aligned}$
RS 232 extension cable (10m)	582.2040 .10
USB adaptor for zero modem cable	111.9046
Industry modem - Westermo TD36 VA can be used as a dial-up line or dedicated line modem (Uh: $20 . .260 \mathrm{~V} \mathrm{AC/} 14$ $\mathrm{V} . .280 \mathrm{~V}$ DC) with mounting rail adaptor for use on PC and device side!	111.9030 .17
IRIG-DCF77 - converter (10 TE) - AC 90V..110V..264V oder DC 100 V .. 220 V .. 300 V - DC $18 \mathrm{~V} . . .60 \mathrm{~V} . .72 \mathrm{~V}$ - As plug-in module 10TE, 3HE - As wall mounting housing 20TE	$\begin{array}{\|l} \text { IRIG-DCF } \\ \text { H1 } \\ \text { H2 } \\ \text { B2 } \\ \text { B1 } \end{array}$
Operating manual	

We take care of it

Additions to PQI-D	CODE
German	G1
English	G2

Software

FEATURE	CODE
Software WinPQ	WinPQ
For parameterising, archiving and evaluating of PQI-D/DA measurement data with	
the following basic functions:	
32-bit Windows program interface	
SQL database for storage of measurement values for each measurement point	
Data access via TCP/IP network	
Option of displaying all measurement quantities that can be read by	
a PQI-D/DA as a function of time and as statistical quantities	
An additional workplace licence is included in the price	
Licence	L0
As a single licence for 2 PQI-D/DAs L0	L1
As a single licence for 2 to 10 PQI-D/DAs L1	L2
Company licence for > 10 PQI-D/DAs L2	L3
Language	A1
German	A2
English	PQ Para Express
Further licences for WinPQ	
For up to three workplaces	
ParaPQ software (without database)	
For the parameterisation of PQI-D/DAs and to read	
PQI-D/DA measurement data (free of charge)	

Notes
\qquad

a-eberle

A. Eberle GmbH \& Co. KG

Frankenstraße 160
D-90461 Nuremberg

Tel.: +49 (0) 911 / 6281 08-0
Fax: +49 (0) 911 / 62810896
E-Mail: info@a-eberle.de
http://www.a-eberle.de
Software - Version:

Copyright 2010 by A. Eberle GmbH \& Co. KG
All rights reserved.
Version: 130117
Version: 4/26/2021 7:20 PM

