

3-349-443-03 3/2.12

Applications

Testing for the Electrical Safety of Electrical Medical Devices in Accordance with the German Medical Product Law (MPG) / MDD The test instrument is used for quick and safe testing and measurement of repaired or modified electrical medical devices or

their components (e.g. patient ports) in accordance with IEC 62353.

Observance of technical safety requirements allows the user of the test instrument to operate electrical medical devices in a hazard-free fashion. The safety of the patient is also assured through the use of tested electrical medical devices.

The device under test can be connected:

- to the test socket with or without adapter for various types of mains connection
- with an adapter for extension cables with or without multiple outlet sockets
- 10 application parts can be connected

Operation

There are two different operating modes.

- Local: measurements are conducted at the operating panel of the measuring instrument.
- Remote: measurements are controlled via PC. The user has the possibility to integrate all measurements into the individual operator interface at the PC and to define test sequences.

For this purpose, all interface commands are documented in detail.

The following are measured:

- Protective earth resistance
- Insulation resistance
- Equipment leakage current
- Touch current
- Patient leakage current
 - (AC/DC portions are measured separately)
- Applied parts leakage current

Measuring methods for leakage current measurements:

- Direct method
- Differential method
- Alternative method

Function Test with Power Analysis (also suitable for high power devices under test up to 16 A)

The device under test can be subjected to a function test with mains voltage via the integrated test socket. The following are measured or automatically calculated during the function test:

- Line voltage (RMS)
- Load current / current consumption (RMS)
- Active and apparent power
- Power factor

Features

Universal test instrument for testing the electrical safety of:

- Electrical medical devices
 - per IEC 62353 / DIN VDE 0751-1:2008
 - for technical safety inspection in accordance with MPG/MDD
- Electrical equipment per DIN VDE 0701-0702
- Data processing devices and equipment
- in accordance with DIN VDE 0701-0702
- Periodic testing per DIN VDE 0701-0702
- USB data interface for connecting a PC
- All measurements controllable via PC
- Safety for the user thanks to integrated personal protection and layout as a safety class II device

Further Measuring Functions

Testing for Correct Mains Connection

The measuring instrument's protective conductor connection is tested each time the start-stop key is pressed.

If a voltage of greater than 25 V is detected between the protective conductor and the finger contact, no measurements are possible.

Mains Plug Polarity Reversal

Mains plug polarity need not be reversed manually. It is performed in the form of a mesurement upon request.

Short-circuit test - test for short-circuiting at the device under test

- 1 Test for short-circuiting of N and L
- 2 Test for short-circuiting of N or L to the protective earth
- $R < 1 \ \Omega \Rightarrow$ short-circuit

Protective Earth Testing (4-pole Measurement)

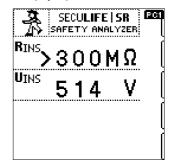
with at least 200 mA test current

Insulation Test

by means of insulation resistance measurement

Leakage Current Test

by means of equipment leakage current, touch current, leakage current of applied parts with mains on applied parts based on the methods of direct, equivalent leakage current or differential current measurement.


Operation at the Instrument, Examples

Softkeys enable the user to select measuring functions conveniently. Functions which are not available are automatically faded out.

Selecting insulation measurement – Selecting of protection class

	PC1 PC2 R FIX
RPE	1
RINS	
IE	
ΙŢ	Ц.
Ір	↓
IAP	님
Functiontest	Yå

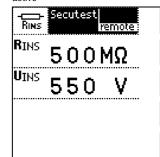
Display of insulation measurement – Display of protection class

- Selecting current of applied parts
- direct/equivalent leakage current
- measurement
- polarity reversal

	DIIS ALT
RPE RINS	LZN N/L
IE IT	t
IP	Ŧ
IAP Functiontest	T ¹

- Display of current of applied parts – Display of measurement type/
- mains polarity – Selecting application part

\$	SECULI SAFETY A		
			<u> </u>
$I_{P\sim}$	< *	1 u F	
I _P			. L
1P	C	luf	
$\mathbf{I}_{P\eqsim}$		luF	j l
	<u> </u>	IUL	!
UP	232	> v	/ l
			[]
A B ● C		HIK OOO	
	<u> </u>	~~~	


Monitoring Function With Active Interface, Examples

In interface mode, all softkeys are faded out and the device name is shown in inverse letters.

Protective earth resistance measurement active

Insulation resistance measurement active

SECULIFE | SR

PC Controllable Instrument for Measuring Safety-Relevant Characteristic Values of Electrical Devices

Technical Data

/ Nominal Range of Use	Reso- lution	Addi- tional Info	Open- Circuit Voltage U _o	Addi- tional Info	Short- Circuit Current	Int. Resist. R _I	Ref. Resist. R _{REF}	Measuring Error	Intrinsic Error	Over Capa Value	load acity Time
man: 1 999 mΩ man: 0.01 9.99 Ω auto: 0.01 30.00 Ω 0.01 3.30 Ω 0.1 10.0 Ω	1 mΩ 10 mΩ 10 mΩ 10 mΩ 100 mΩ	Electronic fuse + fuse link	4.0 4.5 V AC TRMS	where I_{PE} = 200 mA~ where 48 Hz 1)	220 270 mA AC TRMS	_	_	$<\pm10$ % rdg. within a rage of 0.1 10 Ω for IP = 200 mA	$\begin{array}{l} \pm (2.5\% \mbox{ rdg.} + 10 \mbox{ m}\Omega) \\ \mbox{within a rage of} \\ 0.1 \hdots 10 \mbox{ \Omega} \\ \mbox{where IP} = 200 \mbox{ mA} \end{array}$	240 V AC/DC	Cont.
10 300 kΩ 0.01 3.0 MΩ 0.1 30.0 MΩ 1 300 MΩ	10 kΩ 10 kΩ 100 kΩ 1 MΩ	Test voltage: 500 V DC 2)	U _N < U < 1.2 U _N	Nominal current $> 1 \text{ mA}$ where $R_{ISO} = 500 \text{ k}\Omega$	2 mA	_	_	$\begin{array}{c} 0.01 \ \ 100 \ M\Omega: \\ < \pm 10\% \ rdg. \\ > 100 \ M\Omega \\ < \pm 20\% \ rdg. \\ \text{where UP} = 500 \ V \\ each \end{array}$	$\begin{array}{l} 0.1 \ \ 30 \ M\Omega: \\ \pm (2.5\% \ rdg. + 1 \ d) \\ > 30 \ M\Omega \\ \pm (5 \ \% \ rdg. + 1 \ d) \\ \text{where } UP = 500 \ V \\ each \end{array}$	240 V AC/DC	Cont.
Maasuramante - Nij	oct Moti	od (DIR/DI)								
10 300 μA≅ 0.01 3.00 mA at 0.1 30.0 mA at	1 μΑ 10 μΑ 100 mA	= Protectiv Residual cu	e earth curre	oring,		and N)		0.5 20.0 mA: <±10% rdg.	20 300 μ A: ±(5% rdg. + 1 d) > 300 μ A: ±(2.5% rdg. + 1 d)	240 V AC/DC	Cont.
10 300 μA≅ 0.01 3.00 mA at 0.1 30.0 mA at	1 μΑ 10 μΑ 100 μΑ	Probe shut Residual cu	down: I _T > 1 Irrent monito	Ŏ mA∼ (5 pring	,	1 kΩ ±10 Ω		0.02 10 mA at: < ±10% rdg.	20 300 μA at: ±(5% rdg. + 1 d) > 300 μA at:	240 V AC/DC	Cont.
2 300 μA≅ 0.01 3.00 mA at	1 μΑ 10 μΑ	Probe curre Probe shut Residual cu	ent monitorir down: I _P > 1 urrent monito	ig: 0 mA~ (5 pring	ms)	$\begin{array}{c} 1 \text{ k}\Omega \\ \pm 10 \ \Omega \end{array}$	_	0.01 3 mA at: < ±10% rdg.	10 300 μ A at: ±(7.5% rdg. + 1 d) 0.30 3.00 mA at ±(2.5% rdg. + 1 d)	240 V AC/DC	Cont.
10 300 μA~ 0.01 3.00 mA~ 0.1 30.0 mA~	1 μΑ 10 μΑ 100 mA		110 240 V~ -15 / +10%	Fre- quency 50/60/ 200/400 Hz	< 1.5 mA	> 150 kΩ	1 kΩ ±10Ω	$\begin{array}{l} 20 \ \mu\text{A} \ \ 15 \ \text{mA AC:} \\ < \pm 10\% \ \text{rdg.} \\ > 15.0 \ \text{mA AC:} \\ < \pm 15\% \ \text{rdg.} \end{array}$	$\begin{array}{l} 20 \ \mu A \ \ 15 \ m A \ AC: \\ \pm (5\% \ rdg. \ + \ 1 \ d) \\ > \ 15.0 \ m A \ AC: \\ \pm (10\% \ rdg. \ + \ 1 \ d) \end{array}$	240 V AC/DC	Cont.
Measurements – Dif	ferentia	-	IF)								
10 300 μΑ~ 0.01 3.00 mA~ 0.1 30.0 mA	1 μΑ 10 μΑ 100 μΑ	= Protective earth current, direct Residual current monitoring Mains shutdown: > 20 mA~ (25 ms)				0.5 20.0 mA: < ±10% rdg.	$\begin{array}{l} 20 \ \ 300 \ \mu\text{A:} \\ \pm (5\% \ \text{rdg.} + 1 \ \text{d}) \\ > 300 \ \mu\text{A:} \\ \pm (2.5\% \ \text{rdg.} + 1 \ \text{d}) \end{array}$	240 V AC/DC	Cont.		
Neasurements – Alt	ernative		ternative le	akage cu	irrent (AL1	[)		1			
2 300 μA~ 0.01 3.00 mA~ 0.1 30.0 mA~	1 μΑ 10 μΑ 100 μΑ	lest voltage: 110/220/ 230/240 V AC	110 240 V~ -15 / +10%	Fre- quency 50/60 Hz 3)	< 1.5 mA	> 150 kΩ	1 kΩ ±10Ω	$\begin{array}{l} 20 \ \mu A \ \ 15 \ m A \ AC: \\ < \pm 10\% \ rdg. \\ > 15.0 \ m A \ AC: \\ < \pm 15\% \ rdg. \end{array}$	$\begin{array}{l} 20 \ \mu A \ \dots \ 15 \ \text{mA AC:} \\ \pm (5\% \ \text{rdg.} + 1 \ \text{d}) \\ > 15.0 \ \text{mA AC:} \\ \pm (10\% \ \text{rdg.} + 1 \ \text{d}) \end{array}$	240 V AC/DC	Cont.
90 240 V AC (50 400 Hz)	0.1 V							$\pm 5.0\%$ rdg.	±(2.5% rdg. + 1 d)	240 V AC	Cont.
0.02 16.00 A AC (50 400 Hz)	10 mA					$\pm 5.0\%$ rdg.	±(2.5% rdg. + 1 d)	4 A	Cont.		
10 4000 W	1 W	Measured value P and calculated value S are compared, and $f < 1$				f < 100 Hz $\pm 7.5\% \text{ rdg}.$	P > 10 W, PF > 0.5 f < 100 Hz ±(5% rdg. + 10 d)	< 1000 W	Cont.		
		Shutdown at internal temperature > 70 °C $f \ge 100 \text{ Hz} \\ \pm 10\% \text{ rdg.}$						$\begin{array}{l} f \geq 100 \text{ Hz} \\ \pm (7.5\% \text{ rdg.} + 10 \text{ d}) \end{array}$	< 4000 W	10 mir	
10 4000 W	1 VA	Calculated vale $U_{L-N} \bullet I_V$ $\pm 7.5^{\circ}$			f < 100 Hz ±7.5% M	f < 100 Hz ±(5% rdg. + 10 d)	< 1000 W	Cont.			
0.00 1.00 inductive	0.01					±10% rdg. f < 100 Hz ±7.5% M	$f \ge 100 \text{ Hz}$ $\pm (7.5\% \text{ rdg.} + 10 \text{ d})$ P > 10 W, PF > 0.5 f < 100 Hz $\pm (5\% \text{ rdg.} + 10 \text{ d})$ P > 10 W, PF > 0.5 $f \ge 100 \text{ Hz}$	< 4000 W	10 mir		
	man: 1 999 mΩ man: 0.01 3.00 Ω 0.01 3.00 Ω 0.1 3.00 $Ω$ 0.1 3.00 $Ω$ 0.1 3.00 $№2$ 0.1 3.0 MΩ 0.1 30.0 MΩ 1 300 MΩ 10 300 μA≅ 0.01 3.00 mA at 0.1 300 μA≅ 0.01 300 μA≈ 0.01 300 μA≈ 0.01 300 μA~ 0.1 300 μA~	man: 1 999 mΩ 1 mΩ auto: 0.01 3.00 Ω 10 mΩ auto: 0.01 3.00 Ω 10 mΩ 0.1 3.00 Ω 10 mΩ 0.1 3.00 Ω 10 mΩ 0.1 3.0 MΩ 10 kΩ 0.1 300 MΩ 10 kΩ 0.1 300 MΩ 10 kΩ 0.1 300 MΩ 10 MΩ 1 300 MΩ 10 MΩ 10 300 MΩ 1 MΩ Measurements - Direct MetH 10 300 mA at 0.1 300 mA at 10 μA 0.1 300 μA= 1 μA 0.1 300 μA- 1 μA 0.1 300 μA- 10 μA 0.1 300 mA- 10 μA 10 4000 HZ 0.1 V	man: 1 999 mΩ 1 mΩ man: 0.01 9.99 Ω 10 mΩ Electronic auto: 0.01 3.00 Ω 10 mΩ Electronic 0.1 300 MΩ 10 mΩ Test 0.1 300 MΩ 10 MΩ Test 0.1 30.0 MΩ 10 MΩ Test 0.1 30.0 MΩ 10 MΩ Residual ct 0.1 30.0 MΩ 1 MΩ Probe curre 10 30.0 MA≅ 1 μ A Probe curre 0.1 30.0 mA at 10 μ A Probe curre 0.1 30.0 mA at 10 μ A Probe shut 0.1 30.0 mA at 10 μ A Test 0.1 30.0 mA 1 μ A Probe curre 0.1 30.0 mA 1 μ A Test 0.1 30.0 mA 1 μ A Probe shut Residual ct	man: 1 999 mQ 1 mQ Electronic 4.0 4.5 V auto: 0.01 3.00 Q 10 mQ fuse + fuse fuse fuse fuse fuse fuse fuse fuse	man: 1 999 mΩ mar: 0.01 300 Ω 0.1 330 Ω 0.1 330 Ω 0.1 330 Ω 0.1 330 Ω 0.1 330 MΩ 10 mΩ 2Electronic tase + fuse mA max max mA max mA max mA max 	man:1Max1Maxmar:0.1999 mQ1 mQElectronic4.045 vwhere lpc220mar:0.1300 Q10 mQtisse + fuse4.045 vAC TRMS2200.1300 MQ10 MQTestvoltage:11AC TRMSAC TRMS0.1300 MQ10 KQTestvoltage: $1 MQ$ Venere22mere1300 MQ10 KQTestvoltage: $1 MQ$ Nominal2mere1300 MQ1 MQFest M_{AC} TRMSNominal2mA0.1300 mA at10 μ AProbe current monitoringNominal2mA0.1300 mA at10 μ AProbe current monitoring:Nomixa2mA0.1300 mA at10 μ AProbe current monitoring:Nomixa5ms10300 mA at10 μ AProbe current monitoring:Nom A(5 ms)0.1300 mA at10 μ AProbe current monitoring:Nom A(5 ms)10300 mA-10 μ A230/240 V+10%20/40V0.1300 mA-10 μ A230/240 V+10%20/40V10300 mA-10 μ A230/240 V+10%20/40V10300 mA-10 μ A230/240 V+10%20/40V10300 mA-10 μ A230/240 V-15/ <t< td=""><td>Imar: 1</td><td>Imar: 1 999 mΩ mar: 0.1. 999 Ω 0.01 300 Ω 0.01 300 Ω 0.01 300 Ω 10 mΩ 10 mQ 10 mQ </td><td>$\begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \hline \begin{tabular}{ c c c c c c c } \hline \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></t<>	Imar: 1	Imar: 1 999 mΩ mar: 0.1. 999 Ω 0.01 300 Ω 0.01 300 Ω 0.01 300 Ω 10 mΩ 10 mQ 10 mQ 	$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \hline \begin{tabular}{ c c c c c c c } \hline \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

¹⁾ Remote control: 40 ... 200 Hz
²⁾ Remote control: 100 ... 500 V

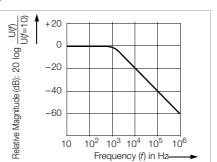
³⁾ Remote control: 50 ... 400 Hz

Beference Conditions

Line voltage Line frequency Waveshape

Ambient temperature Relative humidity Load resistance

Ambient Conditions


Operating temperatur Accuracy range Storage temp. rang Relative humidity Elevation Deployment

230 V ±0.2% 50 Hz ±0.1% Sine (deviation between effective and rectified value < 0.5%) +23 °C ±2 K 40 ... 60% Linear

re	0 °C + 40 °C
	0 °C + 40 °C
ge	– 20 °C + 60 °C
	max.75%, no condensation allowed
	max. 2000 m
	Indoors, except within specified ambient conditions

Measuring Leakage Current

Frequency response is taken into consideration in accordance with the diagram to the right when leakage current is measured.

Influencing Quantities and Influence Error

Influencing Quantity / Sphere of Influence	Designa- tion per IEC 61557	Influence Error $\pm \dots$ % of Measured Value
Test instrument position	E1	2.5 at I PE (diff)
Test instrument supply voltage	E2	1
Ambient temperature (0 °C +40 °C)	E3	1
DUT current consumption	E4	2.5
Low frequency magnetic fields	E5	3.0 at I PE (diff)
DUT impedance	16	2.5
Conductance leakage capacity during insulation measurement	E7	0.5
Waveshape of the measured test current	E8	2.5 at I PA1 Other measuring ranges

Power Supply

Broad Range Variable Power Pack

90 ... 240 V Line voltage Line frequency 50 Hz ... 400 Hz Power consumption Internal consumption < 20 VA Permissible DUT power consumption ≤ 4000 VA Permissible DUT power consumption, cont. operation ≤ 1000 VA Permissible DUT current consumption, cont. operation $\leq 4 \text{ A}$ ~ ≤ 16 A, AC1 max. 20 A / 600 ms Switching capacity

Electrical Safety

Fuses

Safety class Nominal voltage Test voltage Measuring category Fouling factor Safety Shutdown

50 kA breaking capacity at 500 V AC Disconnection from mains per SC II 230 V 2.2 kV AC or 3.3 kV DC 300 V CAT II

2 x FF (UR) 500 V/16 A AC;

(Article number 3-578-215-01)

6.3 mm x 32 mm;

2

With following differential current at DUT during:

- Function test 10 mA~ / < 25 ms - Contact current meas.
- direct current meas. 10 mA~ / < 25 ms Residual current meas. $20 \text{ mA} \sim / < 25 \text{ ms}$
- Protective conductor direct current meas. 10 mA~ / < 25 ms Residual current meas. 20 mA~ / < 25 ms
- with following probe current during:
- Touch current meas. 10 mA~ / < 5 ms - Protective conductor
- resistance measurement 300 mA~/<1ms

Mechanical Design

Display	monochrome backlit dot matrix display, 128 x 128 pixels
Dimensions	(W x D x H) 325 x 250 x 90 mm
Weight	approx. 2 kg
Protection	Housing: IP 40, connections: IP 20 per DIN VDE 0470 part 1/EN 60529

Table Excerpt Regarding Significance of the IP Code

IP XY (1 st digit X)	Protection against pene- tration of solid particles	IP XY (2 nd digit Y)	Protection against penetration by water
0	Not protected	0	Not protected
4 \geq 1.0 mm dia.		4	Splashing water

Data Interface

USB Slave

Detailed interface description upon request

Applicable Regulations and Standards

IEC 62353	Medical electric devices – Periodic tests and tests after the repair of medical electric devices		
IEC 61010-1/EN 61010-1/ VDE 0411-1	Safety requirements for electrical equipment for measurement, control and laboratory use		
IEC 61557/ EN 61557/ VDE 0413	Part 1: General requirements Part 2: Insulation resistance measuring instruments Part 4: Instruments for measuring resistance at ground cables, protective conductors and equipotential bonding conductors		
DIN VDE 0404, part 1 part 3	Devices for technical safety testing of electrical equipment – general requirements		
DIN VDE 0404, part 2	Devices for periodic testing		
EN 60529 VDE 0470, part 1	Test instruments and test procedures Degrees of protection provided by enclosures (IP code)		
DIN EN 61326-1 VDE 0843-20-1	Electrical equipment for measurement, control and labo- ratory use – EMC requirements – Part 1: General requirements		

Accessories

AT16-DI three-phase 16 A differential current adapter AT32-DI three-phase 32 A differential current adapter

For testing for the measurement of loop current using the differential current method.

SECU-cal 10 calibration adapter

Included

- 1 basic instrument: SECULIFE SR
- 1 mains power cable (at the tester: via 16 A inlet plug mains side: country-specific)
- 1 probe cable with test probe
- 1 plug-on alligator clip
- 1 operating instructions
- 1 CD-ROM with description of remote control

The calibration adapter is used for testing the measuring safety of test and measuring instruments by measuring protective conductor resistance, insulation resistance and leakage current.

F2010 SECUSTAR carrying pouch

Carrying pouch for mobile use, with retaining clips for sensors

F2000 carrying pouch for SECULIFE | SR and accessories

Order Information

Description	Туре	Article Number
Basic Instrument	1	
Instrument for DUTs with a line frequency of 50/60 Hz, USB interface, earthing contact plug and outlet, probe cable with test probe, plug-on alligator clip, DKD calibration certificate, operating in- structions	SECULIFE SR	M692A
Same as above but USA version with user interface in English, test socket and mains power cable for USA	SECULIFE SR	M692B
Sensors, Plug Inserts and Adapter	S	
3-phase 16 A differential current adapter	AT16-DI *	Z750A
3-phase 32 A differential current adapter	AT32-DI *	Z750B
Adapter for testing single-phase extension cables for protective conductor continuity and insulation continuity between the short-cir- cuited live and neutral condutors and protective earth	EL1 *	Z723A
test adapter with single-phase and three-phase plug connectors up to CEE 32A – for all tests on single-phase and three-phase electrical devices without mains voltage per DIN VDE – for tests on single-phase and three-phase extension cables per DIN VDE	VL2 E *	Z745W
Adapter for connecting devices under test: 3-pole 16 A, 5-pole 16 A and 32 A, 5 ea. 4 mm jack	CEE-Adapter *	Z745A
Test probe with cable (no coil cord), 2 m, suitable for high-voltage test	SK2	Z745D
Test probe with cable (coil-cable), 2 meters long, suitable for high-vol- tage test	SK2W	Z745N
Probe cable 5 m for earth resistance measurement 5 m	SK5	Z7450
Probe for measuring protective conductor resistance, e.g. at rotating devices under test	Brush probe	Z745G

Description	Туре	Article Number
Accessories		
SECUSTAR carrying pouch	BAGSTAR	Z700E
Universal carrying pouch	F2000	Z700D
Calibration adapter for test instruments per DIN VDE 0701- 0702 with test report	SECU-cal 10	Z715A
Package of 2 retaining clips	Z753B	Z753B

with German socket and German connector plug

- ohter connections available on request

Edited in Germany • Subject to change without notice • PDF version available on the Internet

GMC-I Messtechnik GmbH Südwestpark 15 90449 Nürnberg • Germany Phone +49 911 8602-111 Fax +49 911 8602-777 E-Mail info@seculife.eu www.seculife.eu